The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018

Aug 1, 2023

Global aviation operations contribute to anthropogenic climate change via a complex set of processes that lead to a net surface warming. Of importance are aviation emissions of carbon dioxide (CO2), nitrogen oxides (NOx), water vapor, soot and sulfate aerosols, and increased cloudiness due to contrail formation. Aviation grew strongly over the past decades (1960–2018) in terms of activity, with revenue passenger kilometers increasing from 109 to 8269 billion km yr−1, and in terms of climate change impacts, with CO2 emissions increasing by a factor of 6.8 to 1034 Tg CO2 yr−1. Over the period 2013–2018, the growth rates in both terms show a marked increase. Here, we present a new comprehensive and quantitative approach for evaluating aviation climate forcing terms. Both radiative forcing (RF) and effective radiative forcing (ERF) terms and their sums are calculated for the years 2000–2018. Contrail cirrus, consisting of linear contrails and the cirrus cloudiness arising from them, yields the largest positive net (warming) ERF term followed by CO2 and NOx emissions. The formation and emission of sulfate aerosol yields a negative (cooling) term. The mean contrail cirrus ERF/RF ratio of 0.42 indicates that contrail cirrus is less effective in surface warming than other terms. For 2018 the net aviation ERF is +100.9 milliwatts (mW) m−2 (5–95% likelihood range of (55, 145)) with major contributions from contrail cirrus (57.4 mW m−2), CO2 (34.3 mW m−2), and NOx (17.5 mW m−2). Non-CO2 terms sum to yield a net positive (warming) ERF that accounts for more than half (66%) of the aviation net ERF in 2018. Using normalization to aviation fuel use, the contribution of global aviation in 2011 was calculated to be 3.5 (4.0, 3.4) % of the net anthropogenic ERF of 2290 (1130, 3330) mW m−2. Uncertainty distributions (5%, 95%) show that non-CO2 forcing terms contribute about 8 times more than CO2 to the uncertainty in the aviation net ERF in 2018. The best estimates of the ERFs from aviation aerosol-cloud interactions for soot and sulfate remain undetermined. CO2-warming-equivalent emissions based on global warming potentials (GWP* method) indicate that aviation emissions are currently warming the climate at approximately three times the rate of that associated with aviation CO2 emissions alone. CO2 and NOx aviation emissions and cloud effects remain a continued focus of anthropogenic climate change research and policy discussions.

Publication details
Theme(s)
The urgency of zero
Type(s)
Research paper
Author(s)
Allen, Myles
Year(s)
2021
Atmospheric Environment

Latest news

Oxford Net Zero launches new Serviced Emissions Hub to drive accountability in professional services
Oxford Net Zero launches new Serviced Emissions Hub to drive accountability in professional services

By Siddharth Shekhar Yadav, Alexis McGivern and Clarissa Salmon.    In mid-October, Oxford Net Zero officially launched the Serviced Emissions Hub – a new cross-sector platform bringing together leaders from law, consulting and ... Read more

Oxford Net Zero and VietJet announce Net Zero Aviation project
Oxford Net Zero and VietJet announce Net Zero Aviation project

Last week the University of Oxford signed major agreements with Vietnam on climate innovation, healthcare and access to higher education. At the ceremony, Professor Myles Allen of Oxford Net Zero and Madame Nguyen Thi Phuong Thao, Founder ... Read more

Oxford Net Zero and Futerra launch new “Spheres of Influence” white paper at Climate Week NYC
Oxford Net Zero and Futerra launch new “Spheres of Influence” white paper at Climate Week NYC

Yesterday at Climate Week NYC, Oxford Net Zero and the sustainability agency Futerra launched a white paper on the Spheres of Influence – a new framework for incentivising corporate climate action. The framework provides a way to understand ... Read more

See more news and events