



# THE REALITY OF NET ZERO SEMINAR SERIES



## Equitable Access to the Natural Resources Needed to Achieve Net Zero *Michael Kendall*

OXFORD **EARTH**SCIENCES



Materials critical for transition to a low-carbon economy, by technology type

Importance

## Motivation

The transition towards a low-carbon or post-carbon 'Net-Zero' future unprecedented demand on a wide range of natural resources:



<sup>1</sup>Includes energy storage.

Source: Critical raw materials for strategic technologies and sectors in the EU, A foresight study, European Commission, Mar 9, 2020; The role of critical minerals in clean energy transitions, IEA, May 2021; McKinsey analysis
McKinsey analysis
McKinsey analysis

Materials critical for transition to a low-carbon economy, by technology type

Low to none High

## Motivation

The transition towards a low-carbon or post-carbon 'Net-Zero' future unprecedented demand on a wide range of natural resources:





<sup>1</sup>Includes energy storage.

Source: Critical raw materials for strategic technologies and sectors in the EU, A foresight study, European Commission, Mar 9, 2020; The role of critical minerals in clean energy transitions, IEA, May 2021; McKinsey analysis
McKinsey analysis
McKinsey analysis

Rare Earth Elements (REE) are versatile and their unique properties play a critical role in a wide array of high-performance devices and industrial processes, including steel production.

REE are essential for the Net Zero energy transition



Light Rare Earth Elements

Heavy Rare Earth Elements



#### REE are essential for the Net Zero energy transition



#### **Global REE economic landscape**

Summer 1 2





## Critical metals for the Energy Transition



Challenges: Increased demand - Security of supply - Diversity of sources - Sustainable recovery



## Key challenges!

- How do we supply these resources to a growing and energy hungry population?
- How do we do this in an environmentally responsible way?
- How do we this in an equitable way?
- How do manage a quickly changing geopolitical landscape?

# Oxford initiatives – net zero and the environment

- Oxford Net Zero programme how to reach net zero
- ZERO Institute zero carbon energy systems
- Sustainable chemistry
- New CDT in AI-ML Intelligent Earth
- Nature based solutions; decarbonizing fuel; Oxford network for the environment







# **Oxford Equitable Access to sustainable Resources for a Thriving Habitat (**OxEARTH**)**

How do we sustainably resource our transition to a net zero world?

- > Cross-departmental institute (9 departments across 2 divisions)
- Sustainably resources and waste management: geothermal, biomaterials,  $CO_2$  storage,  $H_2$ , He, critical metals, ....
- Cross-disciplinary approach (ethics, policy, biology, chemistry, law, engineering, economics, ....)
- Stakeholder engagement (industry, policy makers, regulators, NGOs, public)

# Oxford EARTH - Ensuring equitable access to sustainable resources for a thriving habitat

The research themes that will be covered in the programme are:

- 1. Critical metals (e.g., copper, lithium, REEs, etc,)
- 2. Critical gases (hydrogen and helium)
- 3. Microbial metal recovery and reuse (e.g., waste recycling, biomanufacturing, etc.)
- 4. Environmental impact (e.g., bioremediation, waste treatment, hazards, etc.)
- 5. Circular economy (supply chain analysis, recycling, repurposing)
- 6. History and ethics; social license
- 7. Policy and regulation



Mine of the future?

## Examples of current progress

# Microbial mineral bioproduction

OPINION ☐ Open Access ☐ ⓒ ⓒ Will tomorrow's mineral materials be grown? Julie Cosmidis ऒ First published: 31 July 2023 | https://doi.org/10.1111/1751-7915.14298

**MICROBIAL BIOTECHNOLOGY** 

#### Julie Cosmidis – Department of Earth Sciences Harrison Steel – Department of Engineering



## **Microbial biomanufacturing**



- Food
- Pharmaceuticals
- Bulk chemicals
- Biofuels
- Polymers
- Minerals?

Advantages: Energy efficiency, Reduced Carbon emissions, Reduced Waste, Circularity

**Opportunities:** Bioengineering and synthetic biology

## Microbes produce biominerals



Microbial biominerals incorporate elements covering most of the periodic table

## Metal biorecovery

Microbes can **concentrate and mineralize elements** even when present in the environment at **trace concentrations** 

Applications: biomining metals from waste sources, bioremediation of contaminants



Intracellular Sr accumulation by a carbonate-forming cyanobacterium

## Mineral material biomanufacturing

Microbes can produce **mineral materials with well-defined properties for technological applications** (energy storage, construction, etc.)





# Co-recovery of metals and geothermal energy

#### Jon Blundy and others – Department of Earth Sciences Dermot O'Hare – Department of Chemistry

#### FINANCIAL TIMES

HOME WORLD UK COMPANIES TECH MARKETS CLIMATE OPINION LEX WORK & CAREERS LIFE & ARTS HTSI

#### Opinion Science

ANJANA AHUJA ( + Add to myFT

### The next critical mineral source could be volcanic soup

Geologists are exploring whether magmatic brine can be tapped for dissolved treasure such as lithium, copper and cobalt





## Earth – the ultimate recycler



Hudson et al., 2022

Fluids driven of the subduction slab are rich in critical metals and REEs

## Mining for metals – extinct volcanoes (hard to find)



Photo – Jon Blundy

## Volcanoes – rich source of critical metals (easy to find)

Gas flux - Mount Etna





Source: Jacopo Werther, Wikipedia

- Volcanic gases carry a diverse portfolio of metals and metalloids in huge abundance
- Much more metal is retained in trapped, condensed fluids underground
- Approximately **2,000** degassing volcanoes worldwide
- Can this resource be accessed economically?

## Mining volcanoes – a blueprint

## The economic potential of metalliferous sub-volcanic brines

Jon Blundy<sup>1</sup>, Andrey Afanasyev<sup>2</sup>, Brian Tattitch<sup>3</sup>, Steve Sparks<sup>3</sup>, Oleg Melnik<sup>2</sup>, Ivan Utkin<sup>2</sup> and Alison Rust<sup>3</sup>

<sup>1</sup>Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK <sup>2</sup>Institute of Mechanics, Moscow State University, 1 Michurinsky Prospekt, Moscow 119192, Russia <sup>3</sup>School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ, UK

Royal Society Open Science

Whakaari (White Island), New Zealand



Photo: R. Arculus

## Disruptive strategies for metals recovery



2. Mechanical extraction of mineral scales



1. Direct metals capture from hot fluids



Geothermal System Heat + Metals



3. Processing of spent geothermal fluid



## Power plant with metals





- 89,000 yr-old granite heat source
- Hot metal-rich fluids at 3 to 5 km depth
- WD1a drilled to 3729 m in 1995; **510 °C** BHT.
- Brines recovered at 3707-3488 m
- Potential supercritical geothermal site (100 MW)

## **ReSET** – Reframing metal mining for a Sustainable Energy Transition

- Funded by the Oxford Martin School
- Montserrat recovery of metals and geothermal energy
- Programme led by Earth Sciences: brings together researchers from Earth Sciences, Economics, the Smith School, Chemistry, History and Law
- Interconnected issues across the broad themes of Resources, Rights, Risks and Resilience.





## Team

#### <u>Researchers</u>

- Jon Blundy, Earth Sciences (Director)
- Mike Kendall, Earth Sciences
- Tamsin Mather, Earth Sciences
- David Pyle, Earth Sciences
- Petros Bogiatzis, Earth Sciences (PDRA)
- Lupita Olguin, Earth Sciences (PDRA)
- Dermot O'Hare, Chemistry
- Caitlin McElroy, Smith School
- Metehan Ciftci, Smith School (PDRA)
- Rick van der Ploeg, Economics
- Venus Bivar, History
- Amanda Power, History
- Julio Rodríguez Stimson, History (PDRA)
- Thom Wetzler, Law

#### Programme Manager

Maria Petrunova, Earth Sciences

#### Advisory Board

- Sir Steve Sparks, University of Bristol
- Richard Herrington, Natural History Museum, London
- Pat Joseph, University of West Indies, Trinidad
- Vernaire Bass, 664Connect Media, Montserrat

#### Martin School Visiting Fellows

- Pat Joseph, University of West Indies, Trinidad (July, 2024)
- Martyn Unsworth, University of Alberta, Canada (March, 2025)
- John Mavrogenes, Australian National University (May, 2025)
- Yael Parag, Reichman University, Israel (June, 2025)

#### Partner Organisations

- Montserrat Volcano Observatory (MVO)
- Government of Montserrat (GoM)
- Foreign, Commonwealth and Development Office (FCDO)



Rethinking Natural Resources



St. Vincent

- WP2 Metals Endowment and Recovery
- WP3 Economic and Regulatory Framework
- WP4 Equitable Extraction and Social License



## WP1 – seismometer and MT - deployment (and recovery)







## WP1 – geophysics results



-6000





## WP2 – reservoir geochemistry









## WP2 – fluid sampling



High concentrations of some critical metals in sludge

## WP3 – regulatory framework

#### The Power to Change







#### THE MONTSERRAT ENERGY POLICY 2016 – 2030



CHAPTER 8.12

#### MINERALS (VESTING) ACT

#### **CHAPTER 18.01**

**Revised Edition** showing the law as at 1 January 2002



**MONTSERRAT UTILITIES LIMITED (MUL) ACT** 

## WP4 – Ethnographic study



- Ethnographic fieldwork
- Interviews with Montserratians on island
- Interviews with the diaspora
- Widespread support for geothermal
- Concerns about political/economic framework
- Volcano fatigue



## Public and Stakeholder Engagement















## Spinout companies

## Ascension

**Our mission** 

Harnessing the metal richness and the natural power of volcanic systems to recover critical materials in a responsible, efficient and sustainable way

## Ascension



**Project Members** 



Ascension 👫 Marriott UNIVERSITY OF OXFORD

Foreign, Commonwealth Department for & Development Office Business & Trade

In partnership with Oxford University and Marriott Drilling, Ascension is currently conducting a technoeconomic feasibility study on producing Rare Earth Elements (REE) from Ascension Island. This study is sponsored by UKRI – Innovate UK (CLIMATE).

#### Geophysics (field survey)





#### Geochemistry



#### Hydrogeology (reservoir)





## **Snowfox Discovery**

Low Carbon

## 95 Gt CO<sub>2</sub> avoided

if 50% of future hydrogen demand switches from grid connected green hydrogen (IEA, 2023) to natural hydrogen from 2030 - 2050.

#### Natural hydrogen

- Zero carbon in generation
- Low emissions in extraction
- Limited broader impact





## **Snowfox Discovery**

### Natural hydrogen: a vast, untapped resource potential

Generated in huge volumes by carbon-free geological processes deep in the Earth's crust.

- Enough natural hydrogen to power the world's needs for generations.
- Resource potential initially articulated by Snowfox founding team in 2014 Nature paper.
- Low carbon and cost-competitive.



#### Oxford

## Way forward ....

- Earth Sciences research will provide solutions needed to obtain Net Zero – e.g., resources from geofluids; waste storage
- Working with industry is crucial
- Acute need to reduce, reuse and recycle
- Co-recovery of geothermal energy and critical metals
- Hydrogen and helium exploration
- Bioremediation and bio-mining (e.g., Li-S batteries)
- CCS necessary to achieve net zero
- Social license is crucial

An important objective is to ensure that achieving Net Zero in one part of the world does not lead to deleterious consequences in another part of the world



#### Source: NREL, Circular Economy for Energy Materials

- Climate change is one our most pressing societal issues and reducing our dependency on fossil fuels is a key challenge
- Humans are great innovators and now more than ever we are seeing innovations in a wide range of areas
- The field of Earth Sciences is providing solutions!
- Interdisciplinary collaboration is key



# JOIN US NEXT WEEK

## netzeroclimate.org/events/reality/

Photo by USGS on Unsplash