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Materials critical for transition to a low-carbon economy, Importance
by technology type Low to none ” High
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Copper demand [Mt/yr]
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Rare Earth Elements (REE) are
versatile and their unique properties
play a critical role in a wide array of
high-performance devices and
Industrial processes, including
steel production.

REE are essential for the Net Zero
energy transition

Wind turbine Electric vehicle

5

MRI Scanner

X

Light Rare Earth Elements ) Heavy Rare Earth Elements

Defence

Semiconductor

> =

Smart phone



REE demand (tons)

REE are essential for the Net Zero energy transition
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Global REE economic landscape
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Critical metals for the Energy Transition

“- - lessthan 2.5%
of demand

Challenges: Increased demand - Security of supply - Diversity of sources - Sustainable recovery 8
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Key challenges!

* How do we supply these resources to a growing and energy hungry
population?

* How do we do this in an environmentally responsible way?

* How do we this in an equitable way?

* How do manage a quickly changing geopolitical landscape?



Oxford initiatives — net zero and the
environment

* Oxford Net Zero programme — how to reach net
Zero

 ZERO Institute — zero carbon energy systems
* Sustainable chemistry
* New CDT in AI-ML - Intelligent Earth

* Nature based solutions; decarbonizing fuel;
Oxford network for the environment
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Oxford Equitable Access to sustainable Resources for
a Thriving Habitat (OxEARTH)

How do we sustainably resource our transition to a net zero world?

» Cross-departmental institute (9 departments across 2 divisions)

» Sustainably resources and waste management: geothermal, biomaterials, CO,

storage, H,, He, critical metals, ....

» Cross-disciplinary approach (ethics, policy, biology, chemistry, law,

engineering, economics, ....)

» Stakeholder engagement (industry, policy makers, regulators, NGOs, public)



Oxford EARTH - Ensuring equitable access to sustainable
resources for a thriving habitat

The research themes that will be

covered in the programme are: A
. g
1. Critical metals (e.g., copper, lithium, REEsS, = £A
etc,) -
> ¢ 2 Y A —
2. Critical gases (hydrogen and helium) e, * "% & % @m =) @
3. Microbial metal recovery and reuse (e.g., =

waste recycling, biomanufacturing, etc.)

4. Environmentalimpact (e.g., bioremediation,
waste treatment, hazards, etc.)

5. Circular economy (supply chain analysis, ﬁ Q
recycling, repurposing)

6. History and ethics; social license

_ _ Mine of the future?
7. Policy and regulation



Examples of current progress



MICROBIAL BIOTECHNOLOGY

Open Access

OPINION () OpenAccess () @

M inObial mineral Will tomorrow's mineral materials be grown?
bioproduction Juie Cosrmidis

First published: 31 July 2023 | https://doi.org/10.1111/1751-7915.14298

Julie Cosmidis — Department of Earth Sciences
Harrison Steel — Department of Engineering

OXFORD
EARTHSCIENCES




Microbial biomanufacturing

* Food

* Pharmaceuticals
* Bulk chemicals

* Biofuels

* Polymers

* Minerals?

Advantages: Energy efficiency, Reduced Carbon emissions, Reduced Waste, Circularity

Opportunities: Bioengineering and synthetic biology



Microbes produce biominerals

Fe,0,.0.5H,0 -
Fe,05.0.5H,0 e - ——

Microbial biominerals incorporate elements covering most of the periodic table



Metal biorecovery

Microbes can concentrate and mineralize elements even when presentin the
environment at trace concentrations

Applications: biomining metals from waste sources, bioremediation of
contaminants
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Mineral material biomanufacturing

Microbes can produce mineral materials with well-defined properties for
technological applications (energy storage, construction, etc.)
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Carbon-encapsulated sulfur
biominerals

for Li/S battery applications
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Opinion Science

m The next critical mineral source

could be volcanic soup

Geologists are exploring whether magmatic brine can be tapped for

| g dissolved treasure such as lithium, copper and cobalt

Co-recovery of metals and
geothermal energy
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Jon Blundy and others — Department of Earth Sciences
Dermot O’Hare - Department of Chemistry



Earth — the ultimate recycler

Hudson et al., 2022

Fluids driven of the subduction slab are rich in critical metals and REEs



Mining for metals — extinct volcanoes (hard to find)

Cerro Colorado, Chile

Photo - Jon Blundy



Volcanoes —rich source of critical metals (easy to find)
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Source: Jacopo Werther, Wikipedia

Volcanic gases carry a diverse portfolio of metals and metalloids in huge abundance
Much more metal is retained in trapped, condensed fluids underground
Approximately 2,000 degassing volcanoes worldwide

Can this resource be accessed economically?



Mining volcanoes — a blueprint

Whakaari (White Island), New Zealand

The economic potential of
metalliferous sub-volcanic
brines

Jon Blundy', Andrey Afanasyev?, Brian Tattitch®,
Steve Sparks®, Oleg Melnik?, Ivan Utkin® and

Alison Rust®

lDepartment of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
Institute of Mechanics, Moscow State University, 1 Michurinsky Prospekt, Moscow 119192, Russia .
35chool of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol BS8 1RJ, UK Photo: R. Arculus

Royal Society Open Science



Disruptive strategies for metals recovery
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1. Direct metals capture from hot fluids

4. Reservoir leaching by re-injected fluids



Power plant with metals

Supercritical fluid (SCF - 8% NaCl,,) 200 t/hr per well
refined metal prices, $0.10/kWh electricity
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ReSET - Reframing metal mining for a Sustainable Energy Transition

* Funded by the Oxford Martin School
* Montserrat — recovery of metals and geothermal energy

* Programme led by Earth Sciences: brings together
researchers from Earth Sciences, Economics, the Smith
School, Chemistry, History and Law

* Interconnected issues across the broad themes of
Resources, Rights, Risks and Resilience.
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Team

Researchers

Jon Blundy, Earth Sciences (Director)

Mike Kendall, Earth Sciences

Tamsin Mather, Earth Sciences

David Pyle, Earth Sciences

Petros Bogiatzis, Earth Sciences (PDRA)
Lupita Olguin, Earth Sciences (PDRA)
Dermot O’'Hare, Chemistry

Caitlin McElroy, Smith School

Metehan Ciftci, Smith School (PDRA)
Rick van der Ploeg, Economics

Venus Bivar, History

Amanda Power, History

Julio Rodriguez Stimson, History (PDRA)
Thom Wetzler, Law

Programme Manager

Maria Petrunova, Earth Sciences

OXFORD
MARTIN
SCHOOL

—_

Rethinking Natural Resources

UNIVERSITY OF

OXFORD

Advisory Board

Sir Steve Sparks, University of Bristol

Richard Herrington, Natural History Museum, London
Pat Joseph, University of West Indies, Trinidad
Vernaire Bass, 664Connect Media, Montserrat

Martin School Visiting Fellows
e Pat Joseph, University of West Indies, Trinidad (July, 2024)

e Martyn Unsworth, University of Alberta, Canada (March, 2025)
e John Mavrogenes, Australian National University (May, 2025)
e Yael Parag, Reichman University, Israel (June, 2025)

Partner Organisation

e Montserrat Volcano Observatory (MVO)

e Government of Montserrat (GoM)

e Foreign, Commonwealth and Development Office (FCDO)



Work packages

WP1 — Optimising Exploration
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WP2 — Metals Endowment and Recovery

« WP3 — Economic and Regulatory Framework

WP4 — Equitable Extraction and Social License

Limits and main flow axes of dense andesite ash flow depo+
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WP1 - seismometer and MT - deployment (and recovery

Geothermal wells
CALIPSO Borehole network
MVO

Certimus broadband seismometer
WING nodes

Exclusion Zone
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WP1 - geophysics results
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WP2 - fluid sampling

High concentrations of some critical metals in sludge



WP3 - regulatory framework

CHAPTER 8.12

MINERALS (VESTING) ACT

MONTSERRAT

CHAPTER 18.01 showwing the 1o a5t 1 Jomiary 2002 Montserrat
Sustainable Development Plan
2008 — 2020

MONTSERRAT UTILITIES LIMITED (MUL) ACT



WP4 - Ethnographic study

* Ethnographic fieldwork

* Interviews with Montserratians on island

* Interviews with the diaspora

* Widespread support for geothermal
 Concerns about political/economic framework
* Volcano fatigue




Public and Stakeholder Engagement

mvo

Montsaerrat Volcano Observatory




Spinout companies
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Ascension

Geophysics (field survey)

Geochemistry Hydrogeology (reservoir)

0.8
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In partnership with Oxford University and Marriott
Drilling, Ascension is currently conducting a techno-
economic feasibility study on producing Rare Earth
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Natural hydrogen

- Zero carbonin generation
- Low emissionsin extraction
- Limited broader impact

Snowfox Discovery

I 95 Gt CO, avoided
ow c a r b o n if 50% of future hydrogen demand switches from grid connected green
hydrogen (IEA, 2023) to natural hydrogen from 2030 - 2050.

Why manufacture hydrogen?

16

14

12

10
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Hydrogen Production Type




Natural hydrogen: a vast,
untapped resource
potential

Generated in huge volumes by carbon-free geological
processes deep in the Earth’s crust.

* Enough natural hydrogen to power the world’s needs for
generations.

* Resource potential initially articulated by Snowfox founding
team in 2014 Nature paper.

* Low carbon and cost-competitive.

Snowfox Discovery

Hydrogen power |+ Add s myFY |
Geologists signal start of hydrogen energy ‘gold
rush’

Natural scurces of the gas are more abundant than expected and could supply energy
needs for centuries, study shows

- ° = iy i
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Oxford

Way forward ....

ZERO ONZ

Manufacturing ZERO Use
< (Reliability)

Earth Sciences research will provide solutions
needed to obtain Net Zero —e.g., resources from

geofluids; waste storage SustChem : \ ‘k

Working with industry is crucial sutChem epurpose. \\

Acute need to reduce, reuse and recycle : Re":a““fa““’e @Reco;TRTH
Co-recovery of geothermal energy and critical g ‘ ecy;\RTH \“,//

Product | -
Design \__/

Resource Extraction

metals

Hydrogen and helium exploration () EARTH
Waste

Bioremediation and bio-mining (e.g., Li-S batteries)

CCS necessary to achieve net zero

. . . . EARTH
Social license is crucial

An important objective is to ensure that achieving Source: NREL, Circular Economy for Energy
Net Zero in one part of the world does not lead to Materials

deleterious consequences in another part of the
world



N

R ‘1 * Climate change is one our most presing societal issues and
' reducing our dependency on fossil fuels is a key challenge

il « Humans are great innovators and now more than ever we are

\ "».\\b.
’ O 0 . . 0
E seeinginnovations in a wide range of areas
@lls - The field of Earth Sciences is providing solutions!
™ + Interdisciplinary collaboration is key
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