

Agriculture's impact on climate: the science, not the headlines

Michelle Cain, John Lynch, Myles Allen, University of Oxford

https://www.oxfordmartin.ox.ac.uk/pollutants

Joint Roundtable Session: Net Zero APPG and University of Oxford, 25 February 2020 Achieving Net Zero – The role of land

What it takes to stop global warming

- Net Zero emissions of carbon dioxide
- Net Zero *additional warming* due to other emissions
 - this is not the same as Net Zero emissions of all greenhouse gases

Conclusions of the 2018 IPCC Special Report on 1.5°C

Methane and nitrous oxide dominate agricultural emissions

Figure: Edward Hornsby

How does methane affect temperature?

Rising methane emissions cause warming: lots of warming.

• Gently falling methane emissions cause no further warming.

• Rapidly falling methane emissions cause cooling.

https://www.oxfordmartin.ox.ac.uk/publications/net-zero-for-agriculture/

A problem with current accounting metrics

- Standard calculation of "CO₂-equivalent" emissions: multiply methane by 28.
- All three profiles are equated with ongoing CO₂ emissions, all of which cause warming.

OXFORD MARTIN

SCHOOL

https://www.oxfordmartin.ox.ac.uk/publications/net-zero-for-agriculture/

Can we do better?

https://www.oxfordmartin.ox.ac.uk/publications/net-zero-for-agriculture/

The CCC recommendation for Net Zero

- Target of net zero emissions for all GHGs by 2050
- Defined using existing guidelines for CO₂-equivalence (GWP₁₀₀)
- Report notes that this would lead to the UK contributing towards cooling because ongoing methane emissions are 'offset' by removals defined with

Source: The CCC Net Zero Report https://www.theccc.org.uk

 CO_2 -e

What does this mean for UK agriculture?

- Traditional "CO₂-equivalent" emissions:
 - Undervalue new or increasing methane sources (good for Irish farmers and fracking operators)
 - Overvalue long-established or declining methane sources (bad for most UK livestock farmers)

• "CO₂-warming-equivalent" emissions:

- Can be used to estimate warming accurately
- Helpful for estimating temperature outcome from applying a policy
- Thought experiment: What if the UK reduces its agricultural methane emissions to zero by 2050?

Thought experiment: What if the UK reduces its agricultural methane emissions to zero by 2050?

- It would have the same impact on global temperatures as:
 - the removal of about 2 billion tonnes of CO2,
 - which is about 5 years of current UK CO2 emissions from all sources,
 - which is £50 billion at an ETS price of £25/tCO2.

Thought experiment: What if the UK reduces its agricultural methane emissions to zero by 2050?

- It would have the same impact on global temperatures as:
 - the removal of about 2 billion tonnes of CO2,
 - which is about 5 years of current UK CO2 emissions from all sources,
 - which is £50 billion at an ETS price of £25/tCO2.
- Reducing emissions from livestock is needed; there is a genuine debate about:
 - how much by
 - how to do it (reduced herd, efficiencies, farm management, technologies...)
 - what replaces the livestock (environmental impact of the replacements, offshoring of emissions)

Extra slides

In summary

- CO₂ emissions must get to at least net zero to stop global warming
- The more other gases can be reduced, the lower the peak temperature will be
- Short-lived gases like methane should be reduced, but do not need to reach zero emissions
- Reducing emissions from livestock is needed; there is a genuine debate about:
 - how much by
 - how to do it (reduced herd, efficiencies, farm management, technologies...)
 - what replaces the livestock (offshoring of emissions, environmental impact of the replacements)
 - consequences for land use, biodiversity, water, food supply...

In summary

- If limiting global warming is the goal, mitigation options should be evaluated in terms of reductions in temperature
 - this would make the evaluation measure consistent with the Paris Agreement temperature target
 - conventional CO₂-equivalent (CO2-e) emissions do not align with temperature
 - CO₂-warming-equivalent (CO2-we) emissions do

Can we do better?

- GWP_{100} : **28 times** your methane emissions **this year** gives your "CO₂-equivalent" emissions.
- GWP*: 112 times your methane emissions this year minus 105 times your methane emissions 20 years ago gives your "CO₂-warming-equivalent" emissions.

Thought experiment: What if UK agriculture goes to zero emissions by 2040?

UK Cumulative Agricultural Emissions GWP & GWP* (Dashed) vs Temperature Impact

Thought experiment: What if UK agriculture goes to zero emissions by 2040?

- Agriculture's contribution to global warming would be reversed to below 1990 levels even before zero is reached
- because the methane-induced cooling is greater than the nitrous oxide and CO₂-induced warming

UNIVERSITY OF

A (slightly) more realistic scenario for UK agriculture

UK agriculture's contribution to global warming reversed back to 1990 levels by mid-century

Agricultural greenhouse gas emissions are dominated by: **methane** (CH₄) and **nitrous oxide** (N₂O)

Figures from OurWorldInData.org, data from FAO

Methane emissions by sector

Breakdown of total global methane (CH₄) emissions by sector, measured in tonnes of carbon-dioxide equivalents (CO_2e). Carbon dioxide equivalents measures the total greenhouse gas potential of the full combination of gases, weighted by their relative warming impacts.

Nitrous oxide emissions by sector, World

Our World in Data

Breakdown of total global nitrous oxide (N_2O) emissions by sector, measured in tonnes of carbon dioxide equivalents (CO_2e). Carbon dioxide equivalents measures the total greenhouse gas potential of the full combination of gases, weighted by their relative warming impacts.

Source: UN Food and Agricultural Organization (FAO)

OurWorldInData.org/co2-and-other-greenhouse-gas-emissions/ • CC BY

Our World in Data

Equivalent drivers of climate change

A closed power station

A gently declining (10% over 30 years) herd of cattle

Motivation

- A country (or a sector) has a target of reducing CO₂e to zero by 2050, from a 2020 level of 100 MtCO₂e
- What would the effect on global mean surface temperature be if:
 - all their emissions were CO₂?
 - all their emissions were CH₄?

Different impacts from CO₂ and CH₄ emissions

Why do the same CO₂e emissions give such different outcomes?

Figure: Lynch et al, Agriculture's contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors (in press)

How methane differs from CO₂

In the atmosphere:

CO₂ lasts 100s to 1000s of years

Nitrous oxide lasts about a century

Methane lasts about a decade

i.e. For *methane*, removals are large already

Compared to CO_2 , relatively small emissions reductions needed to stabilise methane levels

