

#### The role of Carbon Capture and storage in Achieving Net Zero



- Myles Allen: some harsh truths about what it is going to take to stop global warming.
- **Stuart Haszeldine:** a positive vision for decarbonizing fossil fuels at an affordable cost.
- Margriet Kuijper: How The Netherlands is pioneering the way forward.
- **Tim Kruger:** How UK industry is ready to go in more senses than one.







#### Achieving Net Zero by decarbonizing fossil fuels How we will eventually stop global warming

Myles Allen & Stuart Jenkins

School of Geography and the Environment and

Department of Physics

University of Oxford







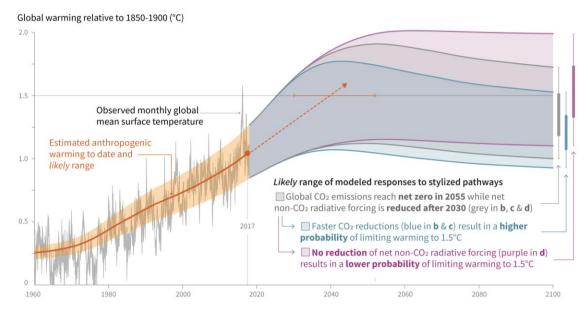
# Achieving Net Zero by decarbonizing fossil fuels How we will eventually stop global warming having tried all the alternatives...

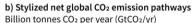
Myles Allen & Stuart Jenkins

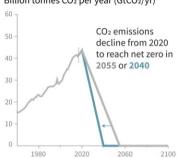
School of Geography and the Environment and

Department of Physics

University of Oxford

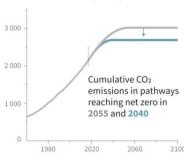


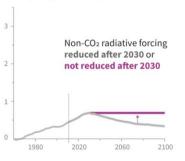




#### Key findings from the IPCC Special Report on 1.5°C

#### a) Observed global temperature change and modeled responses to stylized anthropogenic emission and forcing pathways






Faster immediate CO<sub>2</sub> emission reductions limit cumulative CO<sub>2</sub> emissions shown in panel (c).

#### c) Cumulative net CO<sub>2</sub> emissions Billion tonnes CO<sub>2</sub> (GtCO<sub>2</sub>)



#### d) Non-CO<sub>2</sub> radiative forcing pathways Watts per square metre (W/m²)



Maximum temperature rise is determined by cumulative net  $CO_2$  emissions and net non- $CO_2$  radiative forcing due to methane, nitrous oxide, aerosols and other anthropogenic forcing agents.

Now at 1.1°C, warming at 0.2°C/decade, primarily due to fossil fuel emissions, heading for 1.5°C by 2040.

Limiting warming to 1.5°C requires net zero CO<sub>2</sub> emissions from fossil fuels and industry by or before mid-century.

Other climate drivers and land-use change can affect peak warming by a few tenths of a degree: very useful IF fossil CO<sub>2</sub> emissions are already approaching net zero.





#### To stop global warming...



- ...we need to stop dumping fossil carbon dioxide into the atmosphere.
- And there are only two ways to stop dumping fossil carbon dioxide into the atmosphere:
- > An effective global ban on fossil fuel extraction and use, or
- $\triangleright$  An alternative, safe and permanent means of disposing of CO<sub>2</sub>.





# Putting a price on carbon will not stop global warming





Lignite mining in Anthochori, Greece, 2007





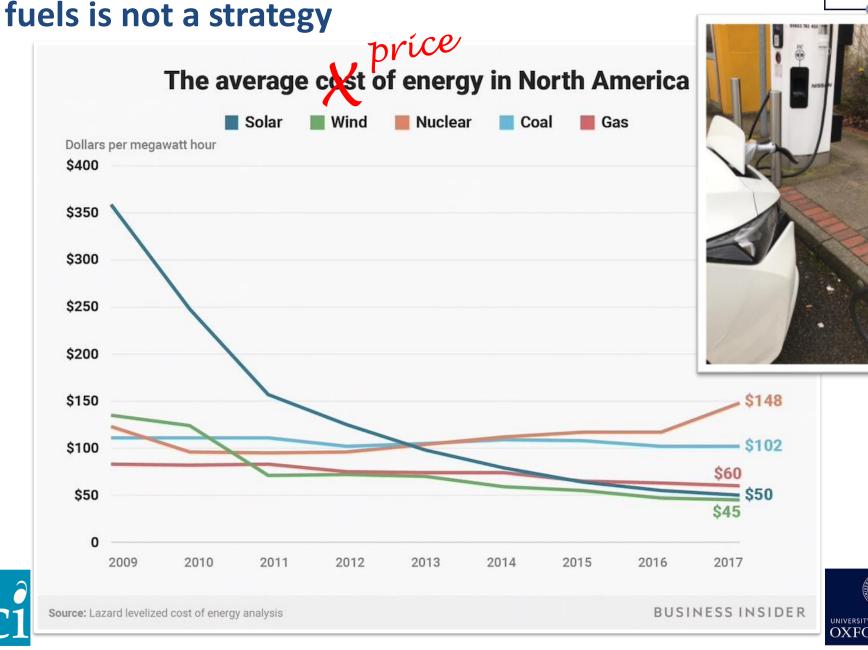
### Nor can we rely on trees to offset fossil carbon emissions indefinitely










Fires in Brazil, a major recipient of carbon storage credits, 2019





Hoping renewables will simply out-compete fossil





# Imagining a ban on the extraction and use of fossil fuels: Cambridge's "Absolute Zero" report



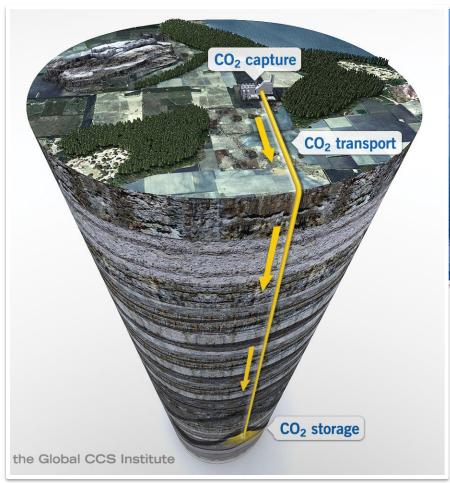
|                          | 2020-2029                                                                                                                                       | 2030-2049                                                                                                                                | 2050 Absolute Zero                                                                                                         | Beyond 2050                                                                                                                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Road vehicles            | Development of petrol/diesel engines ends; Any<br>new vehicle introduced from now on must be<br>compatible with Absolute Zero                   | All new vehicles electric, average size of cars reduces to ~1000kg.                                                                      | Road use at 60% of 2020 levels - through reducing distance travelled or reducing vehicle weight                            | New options for energy<br>storage linked to expanding non-emitting electricity<br>may allow demand growth                                                    |
| Rail                     | Growth in domenstic and international rail as substitute for flights and low-occupancy car travel                                               | Further growth with expanded network and all<br>electric trains; rail becomes dominant mode for<br>freight as shipping declines          | Electric trains the preferred mode of travel for people and freight over all significant distances,                        | Train speeds increase with increasing availability of zero<br>emissions electricity                                                                          |
| Flying                   | All airports except Heathrow, Glasgow and Belf st<br>close with transfers by rail                                                               | All remaining airports close                                                                                                             |                                                                                                                            | Electric planes may fly<br>with synthetic fuel once there are excess non-emitting<br>electricity supplies                                                    |
| Shipping                 | There are currently no freight ships operating without emissions, so shipping must contract                                                     | All shipping declines to zero.                                                                                                           |                                                                                                                            | Some naval ships operate<br>with onboard nuclear power and new storage options<br>may allow electric power                                                   |
| Heating                  | Electric heat pumps replace gas boilers. and<br>building retrofits (air tightness, insulation and<br>external shading) expand rapidly           | Programme to provide all interior heat with heat pumps and energy retroifts for all buildings                                            | Heating powered on for 60% of today's use.                                                                                 | Option to increase use of heating and cooling as supply of non-emitting electricity expands                                                                  |
| Appliances               | Gas cookers phased out rapidly in favour of electric hobs and ovens. Fridges, freezers and washing machines become smaller.                     | Electrification of all appliances and reduction in size to cut power requirement.                                                        | All appliances meet stringent efficiency standards, to use 60% of today's energy.                                          | Use , number and size of appliances may increase with increasing zero-emnis-<br>sions electricity supply                                                     |
| Food                     | National consumption of beef and lamb drops by 50%, along with reduction in frozen ready meals and air-freighted food imports                   | Beef and lamb phased out, along with all imports not transported by train; fertiliser use greatly reduced                                | Total energy required to cook or transport food reduced to 60%.                                                            | Energy available for<br>fertilising, transporting and cooking increases with<br>zero-emissions electricity                                                   |
| Mining material sourcing | Reduced demand for iron ore and limestone as<br>blast furnace iron and cement reduces. Increased<br>demand for materials for electrification    | Iron ore and Limestone phased out while metal<br>scrap supply chain expands greatly and<br>develops with very high precision sorting     | Demand for scrap steel and ores for electrification much higher, no iron ore or limestone.                                 | Demand for iron ore<br>and limestone may develop again if CCS applied<br>to cement and iron production                                                       |
| Materials<br>production  | Steel recycling grows while cement and blast fumace iron reduce; some plastics with process emissions reduce.                                   | Cement and new steel phased out along with<br>emitting plastics . Steel recycling grows.<br>Aluminium, paper reduced with energy supply. | All materials production electric with total 60% power availability compared to 2020                                       | Material production may<br>expand with electricity and CCS, CCU, hydrogen may<br>enable new cement and steel.                                                |
| Construction             | Reduced cement supply compensated by improved material efficiency, new steel replaced by recycled steel                                         | All conventional mortar and concrete phased out, all steel recycled. Focus on retrofit and adaption of existing buildings.               | Any cement must be produced in closed-loop, new builds highly optimised for material saving.                               | Growth in cement replacements to allow more<br>architectural freedom; new steel may become available.                                                        |
| Manufacturing            | Material efficiency becomes promiment as material supply contracts                                                                              | Most goods made with 50% as much material,<br>many now used for twice as long                                                            | Manufacturing inputs reduced by 50% compensated by new designs and manufacturing practices. No necessary reduction output. | Restoration of reduced material supplies allows<br>expansion in output, although some goods will in<br>future be smaller and used for longer than previously |
| Electricity              | Wind and solar supplies grow as rapidly as possible, with associated storage and distribution. Rapid expansion in electrificiation of end-uses. | Four-fold increase in renewable generation from 2020, all non-electrical motors and heaters phased out.                                  | All energy supply is now non-emitting electricity.                                                                         | Demand for non-emitting electricity drives ongoing expansion in supply                                                                                       |
| Fossil fuels             | Rapid reduction in supply and use of all fossil fuels, except for oil for plastic production                                                    | Fossil fuels completed phased out                                                                                                        |                                                                                                                            | Development of Carbon<br>Capture and Storage (CCS) may allow resumption<br>of use of gas and coal for electricity                                            |





#### If we cannot ban fossil fuels or price them out of existence, we need to decarbonize fossil fuels




- Net decarbonization: one tonne of carbon dioxide is permanently disposed of (not in the atmosphere) for every tonne generated by fossil fuels or industry.
- It doesn't have to be the same tonne: some carbon dioxide, such as aviation emissions, will need to be recaptured from the atmosphere (Tim Kruger's talk).
- The rate of disposal needs to account for any losses or any extra carbon dioxide generated in the disposal process.
- Storage must be effectively permanent over timescales of 10,000+ years.



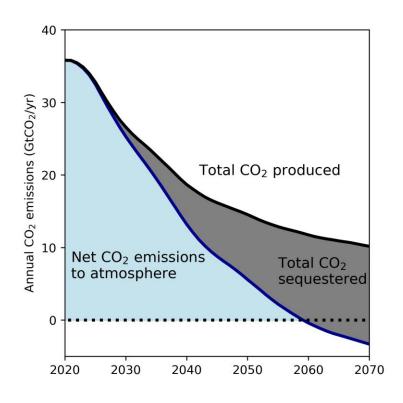


# The simplest proven permanent option is geological storage








- Pure CO<sub>2</sub> becomes liquid under very high pressure.
- Reinject into Earth's crust under impermeable rock.
- Long-term behavior similar to natural oil and gas reserves.





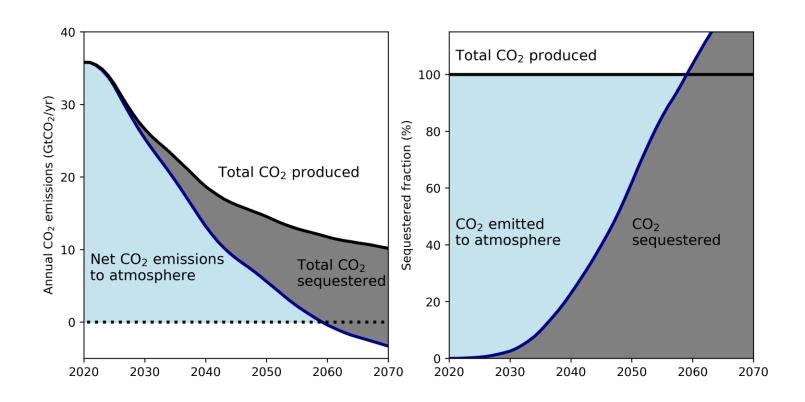
# In IPCC 1.5°C scenarios, we decarbonize fossil fuels by mid-century, but we don't stop using them





Median 1.5°C-consistent scenario from the IPCC database

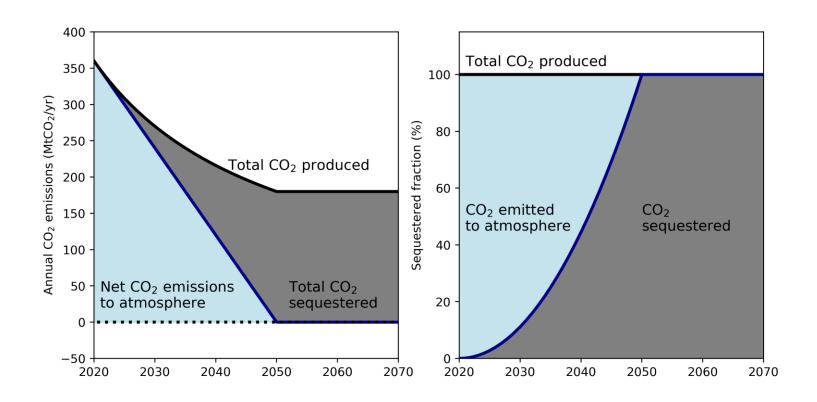
Black: Total CO<sub>2</sub> produced from burning fossil fuels, industrial bio-energy & industrial processes


Blue: Net fossil fuel, industrial bio-energy and industrial process emissions





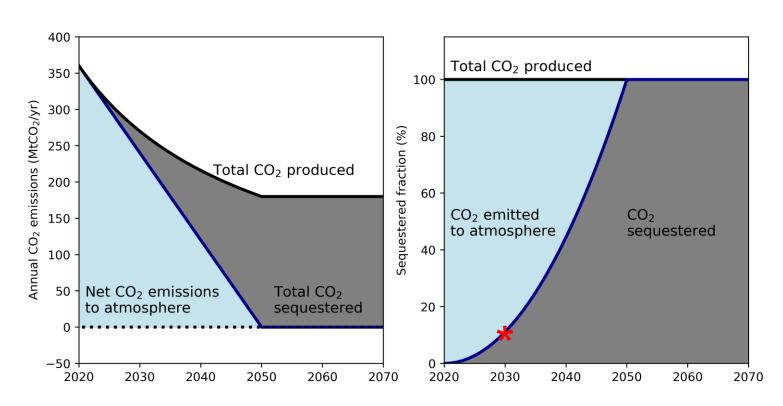
# Another way of showing the IPCC 1.5°C scenarios: smooth transition to 100% sequestration & beyond







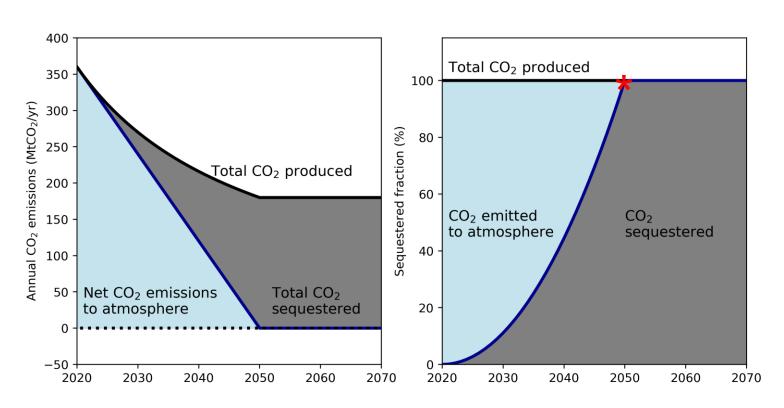






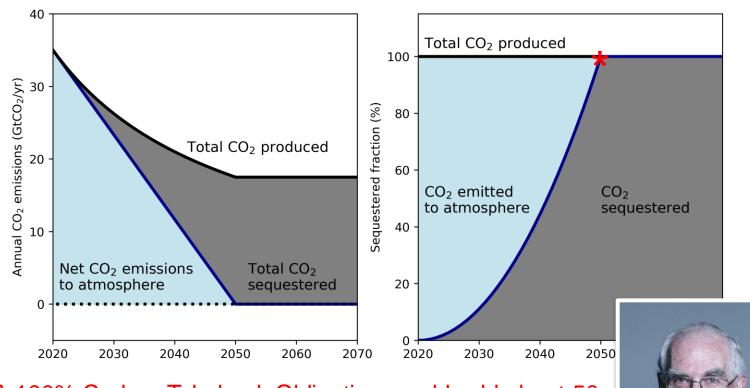





★ A 10% sequestration requirement ("Carbon Takeback Obligation") would cost less than the current UK carbon floor price.








★ A 100% Carbon Takeback Obligation would add about 50p
to a litre of petrol at current costs for direct air capture.







★ A 100% Carbon Takeback Obligation would add about 50p to a litre of petrol at current costs for direct air capture.
 See Amendment 34a of the Energy Bill, 2015



#### Some facts to remember



- Climate change is fixable.
- But we have to get on with it.
- We can't ban fossil fuels, so we need to decarbonize fossil fuels, which means a safe and permanent means of disposing of the CO<sub>2</sub> they generate.
- There is only one institution in the world with the engineering capability, the cashflow & the access to capital to decarbonize fossil fuels:
- > The global fossil fuel industry.
- So how can we get them to do it?



